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Structure of turbulent channel flow with square bars on one wall
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Abstract

The organised motion in a turbulent channel flow with a succession of square bars on the bottom wall has been investigated using

direct numerical simulations. Several values of the ratio w=k, where k is the bar height and w is the longitudinal separation between

consecutive bars have been examined in detail. Relative to a smooth surface, the streamwise extent of the near-wall structures is

decreased while their spanwise extent is increased. As w=k increases, the coherence decreases in the streamwise direction having a

minimum for w=k ¼ 7. This is due to the outward motion occurring, most of all, near the leading edge of the elements. The Reynolds

stress anisotropy tensor and its invariants show a closer approach to isotropy over the rough wall than over a smooth wall.

� 2004 Published by Elsevier Inc.
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1. Introduction

Since the pioneering work of Kline et al. (1967), a
wealth of information is now available on the structure

of a turbulent boundary layer on a smooth wall (e.g.

Cantwell, 1981; Robinson, 1991). Much less is known

on a turbulent boundary layer over rough surfaces. In

particular, the effect the roughness has on the near-wall

structure of the boundary layer is far from complete.

This is in part related to the poor reliability of mea-

surements in the vicinity of the roughness. Further, the
number of parameters that affect the flow, (for example

the density, height, shape of the roughness as well as its

nature, e.g. 2D or 3D) compounds these difficulties.

Nevertheless, useful results have emerged from experi-

mental studies on the way low-speed streaks are modi-

fied by the roughness. The flow visualizations of Grass

et al. (1993) over a rough wall made up of spheres

indicated that the distance between the streaks in-
creased, whereas their streamwise coherence was re-

duced relative to a smooth wall. Consistently, Krogstad

and Antonia (1994) found that two-point correlations
* Corresponding author. Tel.: +39-0644-585556; fax: +39-0648-

4854.

E-mail address: leonardi@kolmogorov.ing.uniroma1.it (S. Leo-

nardi).

0142-727X/$ - see front matter � 2004 Published by Elsevier Inc.

doi:10.1016/j.ijheatfluidflow.2004.02.022
over a mesh roughness indicated a decrease in stream-

wise correlation with a slight increase in the spanwise

extent of the structures. Different features are observed
over a particular (so-called ‘‘d-type’’) rough wall made

up of square bars transverse to the flow, with w=k ¼ 1

(e.g. Perry et al., 1969; Wood and Antonia, 1975;

Djenidi et al., 1999). For a d-type roughness, the latter

authors found low and high-speed streaks alternating in

the spanwise direction with approximately the same

normalised spacing as over a flat wall. All these results

are relative to the fully rough regime. Ashrafian and
Anderson (2003) have carried out a DNS of the turbu-

lent channel flow, with transverse square bars, in the

transitional regime (kþ ’ 13). They showed that streaky

structures are only weakly affected by the rough walls.

A systematic study of the changes caused by varying

w=k has yet to be attempted in experiments. In a pre-

vious paper the dependence of the roughness function

on w=k was discussed (Leonardi et al., 2003), here we use
direct numerical simulations to examine how this ratio

influences the organised structures near the wall. In

particular, we consider two-point velocity correlations,

with the fixed point at several locations within one

roughness wavelength. We also consider the effect w=k
has on the way the cavity communicates with the over-

lying flow. The departure from isotropy of the Reynolds

stress tensor is also examined in the context of its
anisotropy invariants.
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Fig. 1. Square bar roughness, w=k ¼ 10. Top: mean streamlines,

averaged with respect to time and z. Bottom: instantaneous 1=Re ou=oy
on the bottom wall. The thick line corresponds to the zero stream-

function (top) and to u ¼ 0 (bottom). (––) positive, (- - -) negative. The

definitions of k, w and k are indicated. Flow is from left to right.
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2. Numerical procedure

The non-dimensional Navier–Stokes and continuity

equations for incompressible flows are:

oUi

ot
þ oUiUj

oxj
¼ � oP

oxj
þ 1

Re
o2Ui

ox2j
þP; r � U ¼ 0 ð1Þ

where Re ¼ ðUch=mÞ is the Reynolds number, h is the
channel half-width, Uc is the centreline laminar Poiseu-

ille velocity, m is the kinematic viscosity, P is the pres-

sure gradient required to maintain a constant flow rate,

Ui is the component of the velocity vector in the i
direction and P is the pressure. The Navier–Stokes

equations have been discretized in an orthogonal coor-

dinate system using staggered central second-order fi-

nite-differences. Here, only the main features are recalled
since details of the numerical method can be found in

Orlandi (2000). The discretized system is advanced in

time using a fractional-step method with viscous terms

treated implicitly and convective terms explicitly. The

large sparse matrix resulting from the implicit terms is

inverted by an approximate factorisation technique. At

each time step, the momentum equations are advanced

with the pressure at the previous step, yielding an
intermediate non-solenoidal velocity field. A scalar

quantity U projects the non-solenoidal field onto a

solenoidal one. A hybrid low-storage third-order

Runge–Kutta scheme is used to advance the equations

in time. The roughness is treated by the efficient im-

mersed boundary technique described in detail by Fad-

lun et al. (2000). This approach allows the solution of

flows over complex geometries without the need of
computationally intensive body-fitted grids. It consists

of imposing Ui ¼ 0 on the body surface which does not

necessarily coincide with the grid.
3. Flow configuration

DNSs have been performed for a fully developed
turbulent channel flow with square bars on the bottom

wall. Several values of w=k within of the larger database

(0.33, 0.6,1, 2.07, 3, 4, 5.5, 7, 8, 9, 10, 19, 39, Leonardi

et al., 2003) have been investigated in more detail, with

particular emphasis on the correlations. Periodic

boundary conditions apply in the streamwise (x) and

spanwise (z) directions, and there is a no slip condition

at the wall. The computational box is 8h� 2h� ph in x,
y (wall-normal direction) and z, respectively (Fig. 1), the

roughness height is k ¼ 0:2h. The Reynolds number is

Re ¼ 4200 and corresponds to hþ ¼ 180 when both

walls are smooth. The superscript ‘‘+’’ denotes nor-

malisation by wall units Usð� ðs=qÞ1=2Þ, s is the wall

shear stress equal to the sum per unit area of the skin

frictional drag and form drag. The flow rate has been

kept constant in all simulations, hence Us, kþ and hþ
depend on w=k. Results pertaining to the pressure and

friction along the wall, and the Clauser roughness

function may be found in Leonardi et al. (2003). The

simulations also focused on the dependence of the vis-

cous drag (Dv) and form drag (DP ) on the ratio w=k. It
was observed that, as w=k increased, DP increased,

reaching a maximum for w=k � 7. For this w=k, Dv was

minimum. Such a behaviour implies that structural

changes occur as w=k varies.
4. Mean flow

Mean streamlines have shown that for w=k < 7, sep-

aration occurs at the trailing edge of the element and

reattachment is on the opposite vertical wall (Leonardi

et al., 2003). For w=kP 7 (Fig. 1a), the flow reattaches

on the bottom wall. As the next element is approached,

the streamlines are tilted upward and a new separation

region is formed. Fig. 1b shows the instantaneous skin

friction coefficient Cf ¼ 1=Re ou=oy on the bottom wall
for the case w=k ¼ 10. The reattachment and separation

points (Cf ¼ 0) vary in time and spanwise direction (Fig.

1). This is in agreement with the visualizations per-

formed by Liu et al. (1966), with the DNS of a turbulent

flow over a backward facing step by Le et al. (1997) and

with the LES by Cui et al. (2003). Fig. 2 shows distri-

butions of U
þ
for a wide range of w=k and the smooth

channel flow distribution of Kim et al. (1987) is included
as reference (here an overbar denotes averaging with

respect to time x and z). The origin in y was found by

fitting the velocity profiles to U
þ ¼ ð1=0:41Þ ln yþ þ C0.

As expected, the velocity exhibits a downward shift with

respect to the smooth channel. The maximum shift oc-

curs at w=k ¼ 7, i.e. the geometry which yielded the



Fig. 2. Distributions of U
þ
. (––) Kim et al. (1987). (h) w=k ¼ 1; (j)

w=k ¼ 3; (�) 4; (d) 7; (M) 9; (N) 19. The solid lines of reference are

U
þ ¼ 1=0:41 ln yþ þ C0, C0 being 2.9, )4, )6.2, )7.7, )7.6, )6.1 for

w=k ¼ 1, 3, 4, 7, 9, 19, respectively.
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maximum value of form drag. For large values of w=k,
the velocity profiles gradually return to the smooth wall

case.

Ashrafian and Anderson (2003), and Bakken and

Krogstad (2003) have investigated turbulent channel

flows with roughness on both the walls. A symmetrical
configuration is useful for experimentalists because Us

can be calculated from the pressure drop. On the other

hand, numericists can obtain Us simply by integrating

the pressure and friction distribution on the wall.

Therefore, numericists can avoid to treat roughness on

the upper wall which presents an extra cost in term of

number of points and computational time. However, it
Fig. 3. Geometrical sketch and streamlines of a turbulent channel flow

with square elements on the both walls (w=k ¼ 3).

Fig. 4. Comparison of the mean velocity profiles, for w=k ¼ 3: (h)
would certainly be of interest to know how the presence

of the upper wall roughness affects the flow near the

bottom wall. To this end, we carried out, for w=k ¼ 3,

another simulation with square elements on both walls
(Fig. 3). The recirculation within the cavities compares

well with that reported in Leonardi et al. (2003) with

square elements placed on the bottom wall only. Pres-

sure and skin friction distributions (along the bottom

wall) are also in close agreement between the two cases

(Fig. 4).

With roughness on both walls, the velocity profile is,

as expected, symmetric while, when roughness is only on
the bottom wall, the maximum of U , ymax, is shifted

upward. However, when U is scaled in wall units, the

two profiles overlap and the value of the roughness

function is independent of the boundary condition on

the upper wall. Visualizations for the two cases, (not

shown here), reveal the same.
5. Streaks and two-point correlations

The turbulent boundary layer over a flat wall is

characterised by elongated streaks which lift up in a

pseudo-random manner before breaking down. To as-

sess the effect of the roughness, we compare instanta-

neous fluctuations of the streamwise velocity (u=u0),
(where a prime denotes an rms value) in horizontal
planes (x–z), at y=h ¼ 0:03 (for a flat channel, at this

Reynolds number this distance would correspond to

yþ ’ 6). For w=k ¼ 1, the streaks start to be disrupted.

However, elongated structures, somewhat shorter than

those over a smooth wall, can be noted (Fig. 5b). These

resemble those in the visualizations of Djenidi et al.

(1999) for the same surface. By increasing w=k (Fig. 5c

and d), the fluctuations increase in magnitude with a
maximum for w=k ¼ 7 (minimum and maximum are

)0.28, 0.37; )0.49, 0.5; )0.63, 0.66; )0.59, 0.65 for

w=k ¼ 1, 3, 7, 19, respectively). This is due to the in-

creased momentum exchange with the outer layer, as

previously noted from a quadrant analysis by Krogstad

et al. (1992). The structures, with a loss of coherence in
roughness on both walls, (j) roughness on the bottom wall.



Fig. 5. Contour plots of u=u0, where a prime denotes an rms (––) po-

sitive, (� � �) negative. (a) Smooth channel, (b) w=k ¼ 1 (c) 3, (d) 7, (e)

19. Increment 0.5.

Fig. 6. Two-point correlation coefficients in the ðx; zÞ-plane quuðx0Þ,
yþ ¼ 6. Contour from 0.3 to 1 (increment is 0.1). Left, (w=k ¼ 1);

centre (w=k ¼ 3); right, (w=k ¼ 7Þ. (- - -) x ¼ xa; (� � �) x ¼ xb; (–Æ–)
x ¼ xc. Flow is left to right.
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x, tend to be more isotropic than in the smooth wall
case. Very close to the plane of the crest (not shown

here), the roughness splits the elongated structures into

nearly circular regions located above the grooves. The

no-slip condition (u ¼ 0) on the crests reduces the

coherence in the streamwise direction and produces

ou=ox. Moreover within the cavity, near the leading edge

of the element, ou=ox < 0. Continuity requires ou=ox to

be balanced by ov=oy and ow=oz (v and w are the fluc-
tuations of normal and spanwise velocity, respectively),

thus leading to an enhancement of v and w near the

rough wall.
To quantify the previous observations, two-point

correlations, with one point fixed, were computed. Fig. 6

shows quuðx0; x; zÞ ¼ uðx0; xÞuðxÞ=ðu0ðx0Þu0ðxÞÞ for w=k ¼
1, 3, 7 in horizontal planes ðx; zÞ. For reference, the
smooth wall contours are included at the top of the

figure. The overbar indicates averaging with respect to

the number of fields and wavelength, (i.e. �u ¼P
n;t;z uðxþ nk; t; zÞ), x0 ¼ ðx0; y0; z0Þ are the coordinates

of the fixed point, x ¼ ðx0 þ Dx; y0; z0 þ DzÞ is the posi-

tion of the other point. Results were obtained at the

same y as the previous figures for 3 different x0: on the

crest (xa, dashed line), at the centre of the cavity (xb,
dotted line), and slightly upstream of a roughness ele-

ment (xc, dashed dotted line). A decreased streamwise

coherence, relative to the smooth wall case, is observed

for all the rough surfaces. For w=k ¼ 1, although

the contours are considerably less elongated than over

the smooth wall, the coherence in x is larger than for the

other surfaces investigated. However, from the present

results, at this kþ, the disturbance to the overlying flow
caused by the square grooves is not small. This is a

confirmation that DNS complements the experiments

and provides deeper insight into the physics of rough-

wall flows. This can be better appreciated by considering

quu contours in the ðx; yÞ-plane. Although they remain

nearly as elongated as over the smooth wall, there is

little doubt that their inclination has increased, under-

lying the increased communication between the cavities
and the overlying flow (Fig. 7). The increased inclination



Fig. 7. Two-point correlation coefficient in the ðx; yÞ-plane (quu, 0) at
yþ ¼ 6. Contours are from 0.3 to 1 (increment is 0.1); top smooth wall,

bottom w=k ¼ 1.
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is also consistent with the reduced streamwise correla-

tion over this surface in Fig. 6.

As the distance from the wall increases, the extent of

the streamwise correlation remains shorter than in the

smooth channel. This can be inferred from the Taylor

microscale kx ¼ ð�0:5f 00ð0ÞÞ0:5, where f ðrÞ is the longi-

tudinal autocorrelation function, statistics are computed

in z, t. Fig. 8 compares the Taylor microscale between
smooth and rough walls. In the centre of the channel the

distribution relative to the smooth channel, has a weak

asymmetry, due probably to an insufficient number of
Fig. 9. Two-point correlation coefficients at yþ ’ 10 in spanwise direction. (–

is a zoom of figure (b) in wall units.

Fig. 8. Taylor microscale. (––) smooth wall, w=k ¼ 1 (h), 3 (j), 7 (�),

19 (d), 39 (M).
samples. Indeed this is the region where the large scales

act, and their convergence is much slower. In general,

the effect of roughness is to shorten kx. Only for

w=k ¼ 1, there is a local peak near the rough wall
(x2=h ¼ �1, with the origin of x2 at the centerline).

However the intensity is about half that on the smooth

wall. This underlines once again that w=k ¼ 1 is not a

small disturbance. For x2=h > �0:5, kx is very close to

that in the smooth channel. The smallest value of kx is

obtained for w=k ¼ 7. For this geometry the Taylor

microscale is the smallest almost everywhere across the

channel. For larger values of w=k, kx gradually returns
to the values corresponding to the smooth wall (see for

example w=k ¼ 39).

The reduced x extent of the correlation is accompa-

nied by a lengthening in the z extent. The correlation in

the spanwise direction,

Ru;uðDz; yÞ ¼ uðx; y; zÞuðx; y; zþ Dz; tÞ
has a minimum at about zþ ¼ 50 for w=k ¼ 1 as in the

smooth wall case (Fig. 9a). For larger values of w=k
ð3; 7Þ, Ru;u gradually decreases in z with a weaker mini-
mum, about half than that of a smooth wall, shifted

toward larger Dzþ (138 and 210 for w=k ¼ 3 and 7,

respectively). This means that the structures are larger in

z and confirm the tendency toward isotropization.

Moreover the decreased intensity of the minimum

means that the alternating positive and negative signed

structures, which are characteristic of smooth walls, are

less frequent. As us depends strongly on w=k, the cor-
relation is shown also with respect to Dz=h (Fig. 9b). The
zero crossing of the correlation, Ru;u ¼ 0 increases by

increasing w=k and has a maximum for w=k ¼ 7. How-

ever the difference between w=k ¼ 3 and 7 is small and

amplified when the distance is normalised using wall

units, (recall that us is larger for w=k ¼ 7).

For very large values of w=k, the flow tends to that

over a smooth wall and then streaky structures are ex-
pected to appear on the bottom wall. This has been
–) smooth wall; (– - –) w=k ¼ 1; (- - -) w=k ¼ 3; (� � �) w=k ¼ 7. Figure (a)



Fig. 10. Contours of instantaneous normal vorticity in x-, z-planes, at
Dyþ ’ 12 from the bottom wall. Increments 0.5 (––) positive, (� � �)
negative.

Fig. 11. Two-point correlation coefficients at yþ ’ 10 from the bottom

wall, at different positions in x for w=k ¼ 39. (- - -), 32k (� � �), 37k (––),

38k downstream of the element.
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corroborated by analysing instantaneous normal vor-

ticity visualizations, in horizontal planes, at about 12

wall units from the bottom wall (Fig. 10). The roughness

element produces a very strong disturbance which, lo-
cally, gives rise to short structures not aligned to the

flow direction. Moving downstream from the leading

edge, the vorticity tubes appear to be more and more

aligned: however, for w=k ¼ 19, the distance between the

elements is too small and the coherence is disrupted once

again by the subsequent obstacle. On the other hand, for

w=k ¼ 39, positive and negative vorticity tubes can be

observed alternately in the spanwise direction, near the
downstream end of the cavity, i.e. as the leading edge of

the following element is neared (recall that the domain is

periodic).

The previous discussion is quantified by two-

point correlation coefficients in z, R�
u;uðDz; y0Þ ¼

uðx0; y0; zÞuðx0; y0; zþ Dz; tÞ. Statistics, here, are calcu-

lated only in time and z, x0 is kept fixed. As the leading

edge of the downstream element is approached (moving
away from the upstream element), the correlation coef-

ficient becomes more and more negative, with the min-

imum occurring for smaller Dzþ. At about 38k
downstream the element, the minimum is at Dzþ ¼ 75.
Fig. 12. Contours of instantaneous normal velocity in z-, y-planes, upstream
Increments 0.02 (––) positive, (� � �) negative.
therefore quite close to the smooth wall case (50), and

much smaller than the values we found for w=k ¼ 3 and

7 (Fig. 11).
6. Normal wall velocity

The changes in the correlations are attributable to the
normal-wall motion induced by the roughness elements.

Fig. 12 shows instantaneous contours of normal velocity

near the leading edge of an element. For w=k ¼ 1 the

wall-normal velocity is very weak and this is, indeed, the

case closer to the smooth wall. Nonetheless, the v dis-

turbance is probably still sufficient to cause the reduc-

tion in the x extent of the correlation (as discussed

earlier). As w=k increases, the vertical motion becomes
increasingly important, and reaches its maximum

intensity for w=k ¼ 7. In particular for the latter case

very intense ejections (v > 0) can be observed on the

plane of the crests. Therefore, when the flow approaches

a roughness element, vertical and spanwise velocities are

induced and interact with the overlying flow, modifying

the structures.

The disturbance due to the roughness, has a period-
icity in x as is reflected in the correlation of the wall-

normal velocity fluctuations. Local peaks of Rvv occur

with a separation equal to k for w=kP 3 (Fig. 13).

However, for w=kP 7, the local minimum and maxi-

mum are more pronounced, implying a greater strength
of an element. Solid line, bottom wall, dashed line plane of the crests.



Fig. 13. Two¼ point correlation coefficients at yþ ’ 10 in streamwise

direction. (- - -) w=k ¼ 3; (� � �) w=k ¼ 7; (– - –) w=k ¼ 19.
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of the vertical motion. Further, since the magnitudes of

the peaks for w=k ¼ 7 and w=k ¼ 19 are identical, to a

first approximation we can assume that the elements are

virtually isolated when w=k is equal to or exceeds
w=k ¼ 7.

To show how the vorticity field is perturbed by the

square bars, instantaneous isosurfaces of xyð� ou=oz�
ox=oxÞ were computed (Fig. 14). For w=k ¼ 1, the

contours are parallel to the plane of the crests and

similar to those over a smooth wall, except that they are

shorter in x. While for w=k ¼ 1, positive and negative
Fig. 14. Contours of instantaneous xy . Top: w=k ¼ 1, bottom: w=k ¼ 7

Flow is right to left. Dark xy ¼ �4, light xy ¼ 4.
contours alternate regularly in z as over a smooth wall,

for w=k ¼ 7, the vorticity field is more complex. In fact,

the fluctuations of v and w, due to the ‘‘splashing’’ effect

occurring near the leading edge of an element, lift the
structures and increase their width in z. This is in

agreement with the DNS by Ikeda and Durbin (2002).

To quantify the outward motion due to the rough-

ness, the correlation hqvvðx0Þi ¼ hvðx0ÞvðxÞi=ðv0ðx0Þv0ðxÞÞ
was computed (Fig. 15). For a smooth wall, the con-

tours of qvv are elongated in x. Given that, the streaks

gradually lift-up, oscillate and finally break down, it is

not unreasonable that v remains correlated over some
streamwise distance. The contours for w=k ¼ 1 are

somewhat similar to those for the smooth wall even if

they are less elongated. As for the u contours, there are

qualitative similarities despite quantitative differences

between the smooth wall and a rough wall with w=k ¼ 1.

As w=k increases, the contours depart from those over a

smooth surface, and for x ¼ xb and x ¼ xc the y extent of
the correlation is even larger than that in x. In particu-
lar, near the leading edge, the y extent of the correlation
is largest and we expect that this is where ejections out of

the cavity are more likely to occur (this is further cor-

roborated by a quadrant analysis carried out by Leo-

nardi (2002)). No significant differences are observed at

x ¼ xa, xc for w=k ¼ 19 and w=k ¼ 7. As for w=kP 7,

separation occurs over the crests (Leonardi et al., 2003).
Fig. 15. Two-point v-correlations in the ðx; yÞ-plane qvvðx0Þ, yþ ¼ 6.

Contour levels range from 0.3 to 1 (increment is 0.1). Top, smooth wall

(––); (- - -) x ¼ xa; (� � �) x ¼ xb; (– - –) x ¼ xc. Flow is left to right.
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the correlation contours (at x ¼ xa) closely resembling

the recirculation region over the crest.
7. Anisotropy invariants

An estimate of the overall anisotropy is in the Rey-

nolds stress anisotropy tensor bij ¼ huiuji=huiuii � dij=3
(Lumley, 1978). Here, huiuii is twice the turbulent kinetic
energy, (where u1, u2, u3 � u, v,w), and repeated index

summation is implied. dij is the Kronecker delta func-

tion. The tensor bij is symmetric, traceless and is
bounded by the inequalities �1=36 bij 6 2=3. For iso-

tropic turbulence, each stress contributes as one third of

the total turbulent kinetic energy so that each bij should
be zero. For the smooth channel flow, the longitudinal

turbulence intensity is much larger than the other

components, hence b11 is positive and b22 and b33 are

negative (Fig. 16). For w=k ¼ 1, the distributions are

closer to those on the smooth wall ones with a small
reduction of b11 and a small increase of b22 and b33. As

w=k increases, the intensity of the spanwise and normal-

wall velocity fluctuations increases and, for w=k ¼ 7, b11
is minimum at y=h ’ 0:2. Since bii ¼ 0, b22 and b33 are

maximum at the same location. As all the bij’s are closer
to zero with respect to the smooth wall, roughness en-

hances isotropy. Further, whereas the bij’s vary with y
for the smooth wall, for w=k ¼ 3, 7 they are approxi-
mately constant in y, suggesting that the ratios between
Fig. 16. Components of the anisotropy tensor bij averaged with respect to ti

w=k ¼ 7.

Fig. 17. Invariant F ¼ 1þ 9IIþ 27III for square bars roughness: sym
hu2i, hv2i and hw2i are approximately constant with re-

spect to y.
A convenient method for comparing the overall

anisotropy is given by the function F ¼ 1þ 9IIþ 27III,
where II½� �bijbji=2� and III½� bijbjkbki=3� are the sec-

ond and third invariants of bij. The function F is a

measure of the approach to either two-component tur-

bulence (F ¼ 0) or a three-component isotropic state

(F ¼ 1). Over a smooth wall, isotropy is quite poor near

the wall, due to the organisation associated with the

quasi-longitudinal structures, and only approximately

satisfied in the centreline region. As the three stresses do
not coincide, F is smaller than 1. Fig. 17 shows that near

the rough wall, the isotropy is definitely increased (y ¼ 0

coincides with the plane of the crests). The maximum

value of F is shifted beyond the centreline (y=h ¼ 1). For

large values of w=k, a region of constant F extends over

about 3k. A comparison of F at the same y for y > 3k
could lead to the conclusion of Mazouz et al. (1998)

(and in disagreement with what is generally found in the
literature) that roughness increases the anisotropy. In

fact, at the geometrical centreline of w=k ¼ 7, the dif-

ferences between hu2i and hv2i or hw2i are larger than for

a smooth channel. This is due to the upward shift pro-

duced by the roughness, and not a genuine impairment

in isotropy, the peak in F having about the same

intensity and occurring at about y=h ¼ 1:4. This is fur-
ther corroborated by Fig. 17b where the function F is
plotted versus ðymax � yÞ=h, where ymax is the location
me x and z. (––) Kim et al. (1987), (– - –) w=k ¼ 1, (- - -) w=k ¼ 3, (� � �)

bols as in Fig. 16; in (b) ymax is the location of the maximum F .
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where F is maximum. For y ’ ymax the value of F is

about the same for all the surfaces. For larger values of

ðymax � yÞ=h, i.e. as the wall is approached, isotropy is

better approximated above the rough wall, and in par-
ticular for w=k ¼ 7. The case w=k ¼ 1 is, as expected

from the previous figures, closest to the smooth wall.
8. Conclusions

The present direct numerical simulations indicate that
near a rough wall, made up of transverse square bars,

the structures are less elongated than over a smooth

wall. As w=k increases, the coherence is reduced in the

streamwise direction with a minimum for w=k ¼ 7. On

the other hands the structures appear larger in the

spanwise direction. The changes in the structures may be

related to the strength of outward ejections of fluid from

the cavities; this strength reaches its maximum for
w=k ¼ 7. The increased intensity of the wall-normal

velocity fluctuations is coupled to an increased strength

in the spanwise velocity fluctuations, which is difficult to

measure reliably in experiments. On the other hand, the

streamwise velocity fluctuation is not very different to

that on a smooth wall. Hence isotropy, close to the wall,

is better approximated over a rough than a smooth wall.

The dependence on w=k is very strong; for very small
values of w=k, structures and turbulent intensities

resemble those over a smooth wall. For w=k ¼ 3, the

effect of the wall extends up to about 2k above the plane

of the crests, while, for w=k ¼ 7, the distance is as large

as 5k. The ratio w=k ¼ 7 corresponds to that for which

with the roughness function DUþ is largest (Leonardi

et al., 2003). For larger values of w=k, the normal wall

motion induced by the roughness is confined to smaller
regions, and the overlying flow is closer to that above a

smooth wall.
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